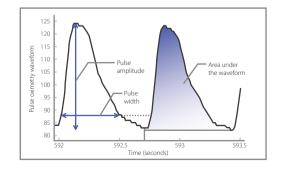
mindray

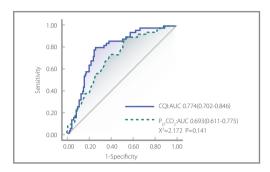
High-quality cardiopulmonary resuscitation based on CQI (Cardiopulmonary Resuscitation Quality Index)

CQL Cardiopulmonary resuscitation quality index


CQI (Cardiopulmonary Resuscitation Quality Index) was jointly researched and developed by Mindray and Peking Union Medical College Hospital for eight years. Based on the non-invasive measurement technology of pulse oximetry (SpO₂), it comprehensively reflects the rescuer's compression quality and the patient's perfusion state during cardiopulmonary resuscitation, and provides an objective evaluation index for clinical medical staff to monitor the quality of cardiopulmonary resuscitation and predict the possibility of patient ROSC.

Monitor the quality of cardiopulmonary resuscitation

Studies have confirmed: the SpO₂ waveform can reflect the volume state, and the area under the pulse oximetry waveform (AUC) can reflect stroke volume1. Mindray combines venous blood oxygen compensation technology, spectrum array analysis and fundamental frequency multiplication technology to analyze the SpO₂ waveform, and develops CQI parameters that can reflect the state of blood perfusion.


- The value range of CQI parameters is 0-100. When the CQI value is lower than 60, it means that the patient's peripheral circulation is not good, and the quality of cardiopulmonary resuscitation is poor.
- It is necessary to improve compression or take other measures to improve the patient's perfusion; when the CQI value is higher than 60, it means that the patient's peripheral circulatory state is good, and the quality of cardiopulmonary resuscitation is good.

CQI outperforms P_{ET}CO₂ in predicting ROSC

The AHA cardiopulmonary resuscitation guidelines recommend the use of end-tidal partial pressure of carbon dioxide ($P_{ET}CO_2$) to monitor the effectiveness of resuscitative maneuvers and predict the likelihood of ROSC in patients².

- The figure on the right shows the ROC curve (receiver operating characteristic) of CQI (threshold: 60) and P_{ET}CO₂ (threshold: 15mmHg) predicting ROSC
- The area under the curve (AUC) of ROSC predicted by CQI was 0.774, and the 95% CI was 0.702-0.846; the area under the curve of ROSC predicted by $P_{ET}CO_2$ was 0.693, and the 95% CI was 0.611-0.7753

Advantages of CQI Monitoring

Non-invasive: Based on Mindray pulse oximetry monitoring

Intuitive: Quantifies the quality of cardiopulmonary resuscitation in numerical form. The larger the CQI value, the better the patient's perfusion and the higher the quality of cardiopulmonary resuscitation

Accurate: Validated by 14 hospitals headed by Peking Union Medical College Hospital, and proved by more than 2000 cases

Comprehensive: Supports real-time display of compression frequency to help rescuers achieve high-quality compressions

²2010 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care

³ CQI medical device clinical trial report

WWW.mindray.com P/N:ENG-High-quality cardiopulmonary resuscitation based on CQI-210285X2P-20230703

©2023 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. All rights reserved

¹ McGrath S. P, Ryan K. L, Wendelken S. M, et al. Pulse oximeter plethysmographic waveform changes in awake, spontaneously breathing, hypovolemic volunteers [J]. Anesth Analg, 2011, 112(2): 368–374.